

2018 Tuberculosis course

Institut Pasteur/Nanshan CCDC October 14-26 Shenzhen, China

Phenotypic and Molecular Tests for Diagnosis and Drug Susceptibility Testing

Catherine Pierre-Audigier

Mycobacterial laboratory

Bichat-Claude Bernard Hospital, Paris, France

Bacteriological diagnosis of TB

- 1. Direct smear
- 2. Molecular resistance detection
- 3. Culture
- 4. Phenotypic drug susceptibility testing

Microscopy of stained smears

- 1. Auramine
- 2. (cold) Ziehl-Neelsen

both based upon acido-alcohol resistance

Auramine staining

Auramine - acid/alcohol - red thiazine

Auramine Positive Acid Fast Bacilli

Fluorescent microscopy
20X
40X

- suggests mycobacteria
- fast
- not specific → ZN

(cold) Ziehl-Neelsen staining

(on the same slide) Fushine - Acid/alcohol - Methylene blue

ZN positive Acid Fast Bacilli

Optical immersion microscopy X 100

A.F.B. positive

Ziehl-Neelsen Coloration Optical Microscope x100

Direct Smear Quantification

WHO/The Union Codification

- Suspect 1-2 AFB in > 200 fields (Repeat DS)
- < 10 1 9 AFB in 100 fields
- + 10 99 AFB in 100 fields
- ++ 1 9 AFB / field
- +++ > 10 AFB / field

Estimation of the density

Direct Smear

- Fast, cheap, can be repeated on 3 specimens
- Poor sensitivity: > 5 x10³ bacilli / mL
- Negative AFB does not eliminate TB
- Is not specific
- Does not evaluate viability
- If pulmonary TB, patient is contagious → notification

Biological Diagnosis of TB

Is it TB?

Or non tuberculous mycobacteria

→ M tb complex detection using molecular tests

Biological Diagnosis of TB

Is it TB?

Is it an antibiotic resistant TB?

Resistance is increasing and 80% MDR cases are not diagnosed or treated

Drug Resistant Tuberculosis

MDR-TB =

Isoniazid-resistant and rifampicin-resistant

- XDR-TB = MDR
 - + Fluoroquinolone-resistant
 - + 1 second line injectable drug-resistant (amikacin, kanamycin or capreomycin)

MDR molecular detection in clinical samples WHO endorsed assays

Rifampicin resistance rpoB

Xpert® (Cepheid) MTB/RIF LPAs : GenoType® (Hain) MTBDR*plus*

95% of **RIF**^R are also INH^R and therefore **MDR-TB**

• Isoniazid resistance katG, inhA LPAs: GenoType® (Hain) MTBDRplus

Xpert® MTB/RIF (Cepheid)

Real Time PCR

M. tuberculosis complex DNA and
Rifampicin resistance detection

Xpert® MTB/RIF

81 bp *rpoB* gene Rifampicin resistance coding region

Hemi-nested PCR
5 probes bind to wt sequence
+ 1 amplification control probe

Results window

View Test

DNA detection

<u>M. tuberculosis</u>

complex

No mutation associated with rifampicin resistance

Results window

Results window

Xpert® MTB/RIF

M. tuberculosis detection in pulmonary specimens

131 bacilli per mL sputum

Sensitivity: AFB+ 98%

AFB- averaging 70%

Specificity: 98.3%

Rifampicin resistance detection

Sensitivity 96.7% Specificity 98.6%

GeneXpert® MTB/RIF Advantages

- Rapid
- Safe, easy to use closed cartridge
- Detection Mtb complex and RIF resistance
- High sensitivity/specificity

GeneXpert® MTB/RIF Limitations

- Cartridge's shelf life
- Electricity, temperature, dust ...

GeneXpert® MTB/RIF Cepheid's OMNI

- More rugged
- Battery
- Withstand dust and heat
- Fewer training requirement

GeneXpert® MTB/RIF

Molecular limitations

- Decreased capacity to detect rpoB C533G mutations
- Occasional false-positive RIF-resistance
 - paucibacillary samples
 - > rpoB silent mutations (Q513Q, F514F)

GeneXpert® MTB/RIF

- Larger chamber for DNA amplification
- > 2 additional targets to detect TB (IS6110 and IS1081)
- Melting curve technology

→ The limit could be a reduced specificity

MDR detection

Antibiotic Resistance sequencing

Major target genes:

```
rpoB Rifampicin
```

katG Isoniazid

inhA Isoniazid

LIPAs

GenoType® MTBDR*plus* (Hain Lifescience)

Do the patient have MDR TB?

HAIN GenoType® MTBDR*plus*Line Probe Assay

Mutations associated with RMP resistance

MDR detection

HAIN GenoType® MTBDR plus to confirm RIF-R

MDR detection?

HAIN GenoType® MTBDRplus

MDR detection

HAIN GenoType® MTBDR plus to detect INH-R

Isoniazid

(inactive)

(catalase-peroxidase)KatG

Isonicotinic-acyl-NADH

InhA (enoyl ACP reductase) (mycolic acid synthesis)

MDR detection

HAIN GenoType® MTBDRplus to detect INH-R

GenoType® MTBDR plus

RMP and INH resistance detection

compared to culture and clinical data

Drug and smear status ^a	Sensitivity (%)	Specificity (%)	PPV (%)	NPV (%)
RMP				
Pos	98.1	96.0	98.1	96.0
Neg	90.7	96.0	98.0	82.7
INH				
Pos	89.3	94.7	98.2	94.7
Neg	93.5	82.3	95.1	(77.7)

^a Pos, positive; Neg, negative.

The patient has MDR TB

Can we give MDR treatment?

What about second line drugs susceptibility?

Does the patient have XDR TB?

Molecular XDR detection

Major targets genes for antibiotic resistance sequencing:

gyrA, gyrB Fluoroquinolones

rrs, eis Amikacin/kanamycin/capreomycin

pncA Pyrazinamide

Line Probe Assays

GenoType® MTBDRs/ (Hain Lifescience)

Does the patient have XDR TB?

MDR patient A

HAIN GenoType® MTBDRs/

Does patient B have XDR TB?

Next molecular diagnosis assays

Xpert SL® XDR (Cepheid)

Isoniazid (*katG*, *inhA* promoter)
Fluoroquinolones (*gyrA*, *gyrB*)
Amikacin, Kanamycin (*rrs*, *eis* promoter)

NGS (Illumina, Genoscreen)

Limitations of molecular tests

- cannot distinguish live bacilli
- Extracted DNA (quality, quantity)
- Outside target zone mutations
- Mutations in sensitive isolates
- Other resistance mechanism
- → Culture
- → Phenotypic drug susceptibility testing

Culture

- Viability of the mycobacteria
- Molecular tests
- Phenotypic drug susceptibility testing

Culture in L3

- Negative pressure
- Double door intrance
- Safety hood
- Protective mask

secure expensive

Work with a *protective* mask (FFP2)

Samples Decontamination

Classic Petroff method

NaOH 4% - NALC
Centrifugation
Neutralization
Pellet resuspending buffer

Direct smear

Inoculation

MGIT

LJ

Solid Medium Culture

- Löwenstein-Jensen or Coletsos
- Long time to positivity: 21 days
- Cultures reading 3 months

LJ medium at 37°C

Liquid Medium Culture

MGIT 960

- Liquid medium 7 mL
- Nutritional Supplement
- Antibiotics

(Polymixine B, Azlocyline, Nalidixic acid, Trimetroprime, Amphothericin B)

Liquid Medium Culture

MGIT 960

- Incubate at 37°C
- During 56 days
- Consumption of oxygen detection
- Automatic reading every hour

Kudoh method

Sodium hydroxide, 4% Ogawa modified medium pH 6.4

Positive culture

Löwenstein Jensen Medium

Ogawa (Kudoh method)

M. tuberculosis

Rough colonies in 21 days

Solid Medium Culture

- Allows colony counts
- The aspect of colonies and the speed of growth gives clues as to the identification
- Several weeks delay ...

Liquid Medium Culture MGIT

Faster, more sensitive

Positive culture identification

Is it TB?

TB complex detection

- Previous biochemical tests (niacine, nitrate reductase, catalase)
- Previous specific molecular probes (Geneprobe)
- Rapid Immunochromatographic Assay (ex.SD Bioline's TB Ag MPT64 Rapid Test)
- Molecular tests: GeneXpert® MTB/RIF or Line Probe Assays

Is it an antibiotic resistant TB? MDR/XDR detection

- Molecular tests:
 GeneXpert® MTB/RIF, Line probe assays, target genes sequencing
- Phenotypic drug susceptibility testing

Phenotypic susceptibility testing

First, second and third line antibiotics

- Classic proportions method LJ medium
- Faster liquid medium MGIT

Liquid Medium Phenotypic Susceptibility Testing

BD BactecTM MGITTM 960

Antibiotic	Low concentratio n (mg/L)	High concentration (mg/L)
STR	1.0	4.0
INH	0.1	0.4
RIF	1.0	_
EMB	5.0	7.5
PZA	100	
FQ, AMK		

Liquid Medium Phenotypic Susceptibility Testing

BD BactecTM MGITTM 960

Phenotypic Susceptibility Testing: Reference Proportions Method

- 1961 by Canetti, Rist and Grosset
- Numeration of the surviving colonies by comparison to the tube without antibiotics
- Sensitive strain: <1% survivor
- Reading of results starting at 21 days
- Second reading 15 days later

Solid Medium Phenotypic Susceptibility Testing

Proportions method

Löwenstein-Jensen medium filled with antibiotics in various concentrations :

- Isoniazid (0.1, 0.2, 1 and 10 mg/L)
- Rifamycine (40 mg/L)
- Ethambutol (2 mg/L)
- Streptomycine (4 mg/L)
- Fluoroquinolones, amikacine, ...

Phenotypic Susceptibility Testing Proportions Method

Sensitive strain

MDR (rpoB S531L, INH^R katG S315T) EMB^R

Timelines for diagnostic testing

谢谢

Further slides are for potential questions

Xpert MTB/RIF

Xpert MTB/RIF

TB LAMP test

Loop-mediated isothermal amplification

Prepare lysate Add 30 µL mix

Dried lamp reagents 40 min / 67°C

Fluorescent signal detection

< 1 hour to detect MCTB (urines in HIV patients)</p>
No sophisticated instrument
Training, electricity, temperature < 30°C</p>