Phenotypic and Molecular Tests for Diagnosis and Drug Susceptibility Testing

Catherine Pierre-Audigier
Mycobacterial laboratory
Bichat-Claude Bernard Hospital, Paris, France
Bacteriological diagnosis of TB

1. Direct smear
2. Molecular resistance detection
3. Culture
4. Phenotypic drug susceptibility testing
Microscopy of stained smears

1. Auramine
2. (cold) Ziehl-Neelsen

both based upon acido-alcohol resistance
Auramine staining

Auramine - acid/alcohol – red thiazone

Auramine Positive Acid Fast Bacilli

Fluorescent microscopy
20X
40X

- suggests mycobacteria
- fast
- not specific → ZN
(cold) Ziehl-Neelsen staining
(on the same slide)
Fushine - Acid/alcohol - Methylene blue

ZN positive
Acid Fast Bacilli

Optical immersion microscopy X 100
A.F.B. positive

Ziehl-Neelsen Coloration Optical Microscope x100

suggests tuberculosis but could be non-tuberculous bacteria actinomycetes, rodococcus …
Direct Smear Quantification

WHO/The Union Codification

- **Suspect**: 1-2 AFB in > 200 fields (Repeat DS)
- **< 10**: 1 – 9 AFB in 100 fields
- **+**: 10 – 99 AFB in 100 fields
- **++**: 1 – 9 AFB / field
- **+++**: > 10 AFB / field

Estimation of the density
Direct Smear

• Fast, cheap, can be repeated on 3 specimens
• Poor sensitivity: \(> 5 \times 10^3 \) bacilli / mL
• Negative AFB does not eliminate TB
• Is not specific
• Does not evaluate viability
• If pulmonary TB, patient is contagious \(\rightarrow \) notification
Biological Diagnosis of TB

Is it TB?

Or non tuberculous mycobacteria

→ Mtb complex detection using molecular tests
Biological Diagnosis of TB

Is it TB?

Is it an antibiotic resistant TB?

Resistance is increasing and
80% MDR cases are not diagnosed or treated
Drug Resistant Tuberculosis

• **MDR-TB** = Isoniazid-resistant and rifampicin-resistant

• **XDR-TB** = MDR
 + Fluoroquinolone-resistant
 + 1 second line injectable drug-resistant
 (amikacin, kanamycin or capreomycin)
MDR molecular detection in clinical samples

WHO endorsed assays

- **Rifampicin resistance** \textit{rpoB}

 Xpert® (Cepheid) MTB/RIF

 LPAs: GenoType® (Hain) MTBDR\textit{plus}

 \textit{95\% of RIF}^R \textit{are also INH}^R

 \textit{and therefore MDR-TB}

- **Isoniazid resistance** \textit{katG, inhA}

 LPAs: GenoType® (Hain) MTBDR\textit{plus}
Xpert® MTB/RIF (Cepheid)

Real Time PCR

M. tuberculosis complex DNA and Rifampicin resistance detection
Xpert® MTB/RIF

81 bp \(rpoB \) gene
Rifampicin resistance coding region

Hemi-nested PCR
5 probes bind to \(wt \) sequence
+ 1 amplification control probe
Results window

DNA detection

M. tuberculosis complex

No mutation associated with rifampicin resistance
Results window

DNA detection
M. tuberculosis complex (small quantity)

Rifampicin Resistance associated mutation
Results window

Assay Name: MTB Beta 8 for LC review-detect
Version: NA

<table>
<thead>
<tr>
<th>Analyte Name</th>
<th>Ct</th>
<th>EndPt</th>
<th>Analyte Result</th>
<th>Probe Check Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probe D</td>
<td>0.0</td>
<td>2.0</td>
<td>NEG</td>
<td>PASS</td>
</tr>
<tr>
<td>Probe C</td>
<td>0.0</td>
<td>2.0</td>
<td>NEG</td>
<td>PASS</td>
</tr>
<tr>
<td>Probe E</td>
<td>0.0</td>
<td>-2.0</td>
<td>NEG</td>
<td>PASS</td>
</tr>
<tr>
<td>Probe B</td>
<td>0.0</td>
<td>6.0</td>
<td>NEG</td>
<td>PASS</td>
</tr>
<tr>
<td>Bg</td>
<td>27.4</td>
<td>260.0</td>
<td>PASS</td>
<td>PASS</td>
</tr>
<tr>
<td>Probe A</td>
<td>0.0</td>
<td>2.0</td>
<td>NEG</td>
<td>PASS</td>
</tr>
</tbody>
</table>

MTB not detected
Xpert® MTB/RIF

M. tuberculosis detection in pulmonary specimens

131 bacilli per mL sputum

Sensitivity: AFB+ 98%

AFB- averaging 70%

Specificity: 98.3%

Rifampicin resistance detection

Sensitivity 96.7%

Specificity 98.6%
GeneXpert® MTB/RIF

Advantages

- Rapid
- Safe, easy to use closed cartridge
- Detection Mtb complex and RIF resistance
- High sensitivity/specificity
GeneXpert® MTB/RIF

Limitations

- Cartridge’s shelf life
- Electricity, temperature, dust …
GeneXpert® MTB/RIF

Cepheid’s OMNI

- More rugged
- Battery
- Withstand dust and heat
- Fewer training requirement
GeneXpert® MTB/RIF

Molecular limitations

• Decreased capacity to detect \(rpoB \) C533G mutations
• Occasional false-positive RIF-resistance
 ➢ paucibacillary samples
 ➢ \(rpoB \) silent mutations (Q513Q, F514F)
GeneXpert® MTB/RIF ULTRA

- Larger chamber for DNA amplification
- 2 additional targets to detect TB (IS6110 and IS1081)
- Melting curve technology

→ Increased sensitivity only for bacilli detection
 We expect better sensitivity for children, HIV, extra-pulmonary specimens
→ The limit could be a reduced specificity
MDR detection

Antibiotic Resistance sequencing

Major target genes:

- $rpoB$ Rifampicin
- $katG$ Isoniazid
- $inhA$ Isoniazid

LIPAs

GenoType® MTBDRplus (Hain Lifescience)
Do the patient have MDR TB?

HAIN GenoType® MTBDRplus
Line Probe Assay
Mutations associated with RMP resistance

% of the indicated mutations in Rif-R strains (from Musser, 1995)
MDR detection

HAIN GenoType® MTBDRplus to confirm RIF-R
MDR detection?

HAIN GenoType® MTBDRplus

Rifampicin resistance is confirmed
MDR detection

HAIN GenoType® MTBDRplus to detect INH-R

Isoniazid

(inactive)

(catalase-peroxidase) KatG

NADH

Isonicotinic-acyl-NADH

InhA (enoyl ACP reductase)
(mycolic acid synthesis)
MDR detection

HAIN GenoType® MTBDR^{plus} to detect INH-R

\[RIF^R \quad INH^R \]

Isoniazid

(inactive)

(catalase-peroxidase)KatG

\[\text{NADH} \]

Isonicotinic-acetyl-NADH

\[\text{InhA} \quad \text{(enoyl ACP reductase)} \]

\[\text{(mycolic acid synthesis)} \]

\[= \text{MDR - TB} \]
GenoType® MTBDRplus

RMP and INH resistance detection compared to culture and clinical data

<table>
<thead>
<tr>
<th>Drug and smear status(^a)</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
<th>PPV (%)</th>
<th>NPV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pos</td>
<td>98.1</td>
<td>96.0</td>
<td>98.1</td>
<td>96.0</td>
</tr>
<tr>
<td>Neg</td>
<td>90.7</td>
<td>96.0</td>
<td>98.0</td>
<td>82.7</td>
</tr>
<tr>
<td>INH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pos</td>
<td>89.3</td>
<td>94.7</td>
<td>98.2</td>
<td>94.7</td>
</tr>
<tr>
<td>Neg</td>
<td>93.5</td>
<td>82.3</td>
<td>95.1</td>
<td>77.7</td>
</tr>
</tbody>
</table>

\(^a\) Pos, positive; Neg, negative.
The patient has **MDR TB**

Can we give MDR treatment?

What about second line drugs susceptibility?

*Does the patient have **XDR TB**?*
Molecular XDR detection

Major targets genes for antibiotic resistance sequencing:

- $gyrA$, $gyrB$ Fluoroquinolones
- rrs, eis Amikacin/kanamycin/capreomycin
- $pncA$ Pyrazinamide

Line Probe Assays

- GenoType® MTBDRsl (Hain Lifescience)
Does the patient have XDR TB?

MDR patient A

HAIN GenoType® MTBDRsl

- **gyrA** → Fluoroquinolones
 - FQs

- **gyrB** → Fluoroquinolones

- **rrs** → KAN/AMK/CAP/VIO

- **eis** → KAN
 - KAN/AMK/CAPs

Patient A does not have XDR TB

9 months MDR treatment
Does patient B have XDR TB?

MDR patient A

MDR patient B

HAIN GenoType® MTBDRsl

Patient B has XDR TB

Treatment?

FQR (D94G)

KAN/AMK/CAP

MDR patient A

MDR patient B

HAIN GenoType® MTBDRsl

Patient B has XDR TB

Treatment?
Next molecular diagnosis assays

Xpert SL® XDR (Cepheid)

- Isoniazid (*katG, inhA* promoter)
- Fluoroquinolones (*gyrA, gyrB*)
- Amikacin, Kanamycin (*rrs, eis* promoter)

NGS (Illumina, Genoscreen)
Limitations of molecular tests

- cannot distinguish live bacilli
- Extracted DNA (quality, quantity)
- Outside target zone mutations
- Mutations in sensitive isolates
- Other resistance mechanism

→ *Culture*
→ *Phenotypic drug susceptibility testing*
Culture

- Viability of the mycobacteria
- Molecular tests
- Phenotypic drug susceptibility testing
Culture in L3

- Negative pressure
- Double door entrance
- Safety hood
- Protective mask

secure
expensive
Work with a *protective mask* (*FFP2*)
Samples Decontamination
Classic Petroff method

NaOH 4% - NALC
Centrifugation
Neutralization
Pellet resuspending buffer

NAC-PAC®AlphaTec
Direct smear
Inoculation

MGIT

LJ
Solid Medium Culture

- Löwenstein-Jensen or Coletsos
- Long time to positivity: 21 days
- Cultures reading 3 months
LJ medium at 37°C
Liquid Medium Culture

MGIT 960

• Liquid medium 7 mL
• Nutritional Supplement
• Antibiotics
 (Polymixine B, Azlocyline, Nalidixic acid, Trimetroprime, Amphothericin B)
Liquid Medium Culture

MGIT 960

- Incubate at 37°C
- During 56 days
- Consumption of oxygen detection
- Automatic reading every hour
Kudoh method

Sodium hydroxide, 4%
Ogawa modified medium pH 6.4

No centrifugation
Positive culture

Löwenstein Jensen Medium

Ogawa (Kudoh method)

M. tuberculosis

Rough colonies in 21 days
Solid Medium Culture

• Allows colony counts
• The aspect of colonies and the speed of growth gives clues as to the identification
• Several weeks delay …
Liquid Medium Culture MGIT

Faster, more sensitive

BD Bactec™ MGIT™ 960
Positive culture identification

Is it TB? **TB complex detection**

- Previous biochemical tests (niacine, nitrate reductase, catalase)
- Previous specific molecular probes (Geneprobe)
- **Rapid Immunochromatographic Assay**
 - (ex. SD Bioline’s TB Ag MPT64 Rapid Test)
- **Molecular tests:** GeneXpert® MTB/RIF or Line Probe Assays

Is it an antibiotic resistant TB? **MDR/XDR detection**

- **Molecular tests:**
 - GeneXpert® MTB/RIF, Line probe assays, target genes sequencing
- **Phenotypic drug susceptibility testing**
Phenotypic susceptibility testing

First, second and third line antibiotics

• Classic proportions method LJ medium
• Faster liquid medium MGIT
Liquid Medium Phenotypic Susceptibility Testing

BD Bactec™ MGIT™ 960

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Low concentration (mg/L)</th>
<th>High concentration (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>STR</td>
<td>1.0</td>
<td>4.0</td>
</tr>
<tr>
<td>INH</td>
<td>0.1</td>
<td>0.4</td>
</tr>
<tr>
<td>RIF</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>EMB</td>
<td>5.0</td>
<td>7.5</td>
</tr>
<tr>
<td>PZA</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>FQ, AMK</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Liquid Medium
Phenotypic Susceptibility Testing

BD Bactec™ MGIT™ 960
Phenotypic Susceptibility Testing: Reference Proportions Method

- 1961 by Canetti, Rist and Grosset
- Numeration of the surviving colonies by comparison to the tube without antibiotics
- Sensitive strain: <1% survivor
- Reading of results starting at 21 days
- Second reading 15 days later
Solid Medium Phenotypic Susceptibility Testing

Proportions method

Löwenstein-Jensen medium filled with antibiotics in various concentrations:

- Isoniazid (0.1, 0.2, 1 and 10 mg/L)
- Rifamycine (40 mg/L)
- Ethambutol (2 mg/L)
- Streptomycine (4 mg/L)
- Fluoroquinolones, amikacine, …
Phenotypic Susceptibility Testing
Proportions Method

<table>
<thead>
<tr>
<th></th>
<th>Control without ATB</th>
<th>Control without ATB</th>
<th>INH 0.1µg/ml</th>
<th>INH 0.2µg/ml</th>
<th>INH 1µg/ml</th>
<th>RIF 40µg/ml</th>
<th>EMB 2µg/ml</th>
<th>STR 4µg/ml</th>
</tr>
</thead>
</table>

Sensitive strain
MDR (rpoB S531L, INH$_R^R$ katG S315T) EMB$_R^R$

<table>
<thead>
<tr>
<th></th>
<th>INH 0.1 mg/L</th>
<th>INH 0.2 mg/L</th>
<th>INH 1 mg/L</th>
<th>INH 10 mg/L</th>
<th>RIF 40 mg/L</th>
<th>EMB 2 mg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Image of test tubes with various antibiotic concentrations](image-url)
Timelines for diagnostic testing

- **Week 0**: Microscopy - AFB
- **Week 1**: Molecular assays - RIF^R (= 95% MDR)
- **Week 2**: Liquid Culture
- **Week 3**: Phenotypic DST
- **Week 4**: NGS
- **Week 5** to **Week 12**: MDR/XDR
谢谢
Further slides are for potential questions
In Rapid implementation of the Xpert MTB/RIF diagnostic test, OMS 2011
Xpert MTB/RIF

RIF-R prevalence

PPV
NPV

In Rapid implementation of the Xpert MTB/RIF diagnostic test, OMS 2011
TB LAMP test

Loop-mediated isothermal amplification

Prepare lysate
Dried lamp reagents
Add 30 µL mix
40 min / 67°C

Fluorescent signal detection

< 1 hour to detect MCTB (urines in HIV patients)
No sophisticated instrument
Training, electricity, temperature < 30°C